Misidentification in mark-recapture: have you got the moves?

M. R. Schofield^{a,b} and S. J. Bonner^{a,c}

^aDepartment of Statistics University of Kentucky Lexington, KY, USA

^bmatthew.schofield@uky.edu ^csimon.bonner@uky.edu

Keywords: Misidentification; Null basis; Markov basis

Abstract: Misidentification in mark-recapture studies can lead to biased estimation and inaccurate decision making. Link et al. (2010) proposed a solution when the observed data can be expressed as a linear function of known configuration matrix \boldsymbol{A} and latent (correctly identified) data \boldsymbol{x} with corresponding model $f(\boldsymbol{x}|\boldsymbol{\theta})$. Fitting the model via MCMC is challenging since \boldsymbol{x} must satisfy the linear constraint. Link et al. overcame this difficulty by (i) finding a set of vectors (called moves) that form a basis for the null space of \boldsymbol{A} , and (ii) using these moves one-at-a-time to go between legitimate values of \boldsymbol{x} . However, we give examples that show that the approach of Link et al. may not be sufficient to produce an irreducible Markov chain; there may be (at least) two data vectors \boldsymbol{x}_1 and \boldsymbol{x}_2 that we cannot transition between when applying the moves one-at-a-time, yet both satisfy the linear constraint. To solve this problem, we consider the notion of a Markov basis; a larger set of vectors (moves) that form a spanning set for the null space of \boldsymbol{A} that ensure irreducibility of the Markov chain when using one-at-a-time to update \boldsymbol{x} . We illustrate the use of a Markov basis for the examples considered earlier.

References

Link, W. A., Yoshizaki, J., Bailey, L. L., and Pollock, K. H. (2010), "Uncovering a latent multinomial: analysis of mark-recapture data with misidentification," *Biometrics*, 66:178-185.