Misidentification in mark-recapture: have you got the moves?

M. R. Schofielda,b and S. J. Bonnera,c

aDepartment of Statistics
University of Kentucky
Lexington, KY, USA
bmatthew.schofield@uky.edu
csimon.bonner@uky.edu

Keywords: Misidentification; Null basis; Markov basis

Abstract: Misidentification in mark-recapture studies can lead to biased estimation and inaccurate decision making. Link et al. (2010) proposed a solution when the observed data can be expressed as a linear function of known configuration matrix A and latent (correctly identified) data x with corresponding model $f(x|\theta)$. Fitting the model via MCMC is challenging since x must satisfy the linear constraint. Link et al. overcame this difficulty by (i) finding a set of vectors (called moves) that form a basis for the null space of A, and (ii) using these moves one-at-a-time to go between legitimate values of x. However, we give examples that show that the approach of Link et al. may not be sufficient to produce an irreducible Markov chain; there may be (at least) two data vectors x_1 and x_2 that we cannot transition between when applying the moves one-at-a-time, yet both satisfy the linear constraint. To solve this problem, we consider the notion of a Markov basis; a larger set of vectors (moves) that form a spanning set for the null space of A that ensure irreducibility of the Markov chain when using one-at-a-time to update x. We illustrate the use of a Markov basis for the examples considered earlier.

References