Mapping diversity indices: a false simple question

V. Suntov1, N. Bez2, JM. Fromentin3, S. Pavoine4, C. Meynard5, A. Jadaud3, B. Mérigot1

1Université Montpellier 2, UMR EME 212, Centre de Recherches Halieutiques Méditerranéennes et Tropicales, Sète, France

2Institut de Recherche pour le Développement (IRD), UMR EME 212, Centre de Recherches Halieutiques Méditerranéennes et Tropicales, Sète, France
nicolas.bez@ird.fr

3Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), UMR EME 212, Centre de Recherches Halieutiques Méditerranéennes et Tropicales, Sète, France
Jean.Marc.Fromentin@ifremer.fr

4Muséum national d'Histoire naturelle (MNHN), UMR 7204 CNRS-UPMC, Paris, France
pavoine@mnhn.fr

5Centre de Biologie pour la Gestion des Populations (CBGP), UMR INRA/IRD/Cirad/Montpellier SupAgro, Montferrier-sur-Lez, France
Christine.Meynard@supagro.inra.fr

\textbf{Keywords}: map, diversity index, β-diversity, betagram, kriging procedure, species richness, quadratic entropy

\textbf{Abstract}: Mapping diversity is central to numerous research and applied fields in ecology. Mapping species diversity indices allows monitoring spatial and/or temporal variation in communities faced to environmental and human impacts, and helps identifying areas for effective conservation planning and management. Two approaches can be considered to map diversity: (i) the indirect approach, which consists in modeling individual species distributions, then stack the distributions of all species and map the desired diversity index and (ii) the direct approach which relies on mapping directly the desired diversity index. The latter approach is inaccurate because diversity indices are non additive. Therefore, the variance and some of its derivatives like the variogram are not appropriate tools to measure variability. β-diversity, which quantifies the turnover between locations, has thus been
investigated. More precisely, we integrated the variograms of β-diversity (i.e. the betagram) within the interpolation procedures. We then confronted results of this novel direct approach with the outcomes of i) the direct kriging estimation of α-diversity and ii) the indirect approach based on individual kriging maps. Two diversity indices were considered in this study: species richness and Rao's quadratic entropy that we applied on 18-years of surveys of the fish community in the northwestern Mediterranean Sea. We finally showed that none of the approaches performed well, for different reasons, and that further methodological development is still needed.